Introducing Multimedia Information Retrieval to libraries


The paper aims to introduce libraries to the view that operating within the terms of traditional Information Retrieval (IR), only through textual language, is limitative, and that considering broader criteria, as those of Multimedia Information Retrieval (MIR), is necessary. The paper stresses the story of MIR fundamental principles, from early years of questioning on documentation to today’s theories on semantic means. New issues for a LIS methodology of processing and searching multimedia documents are theoretically argued, introducing MIR as a holistic whole composed by content-based and semantic information retrieval methodologies. MIR offers a better information searching way: every kind of digital document can be analyzed and retrieved through the elements of language appropriate to its own nature. MIR approach directly handles the concrete content of documents, also considering semantic aspects. Paper conclusions remark the organic integration of the revolutionary contentual conception of information processing with an improved semantics conception, gathering and composing advantages of both systems for accessing to information.


Multimedia Information Retrieval; Content-Based Image Retrieval; Content description; Multimedia documents; Semantic gap

Full Text:





Ah-Pine, Julien, et al. 2015. “Unsupervised visual and textual information fusion in CBMIR using graph-based methods.” ACM Transactions on Information Systems 33 (3): 1–31.

Beaudoin, Joan E. 2016. “Content-based image retrieval methods and professional image users.“ Journal of the Association for Information Science & Technology 67 (2): 350–365.

Briet, Susan. 1951. Qu’est-ce que la documentation? Paris: EDIT.

Buckland, Michael K. 1991. “Information Retrieval of more than text.” Journal of the American Society for Information Science 42 (8): 586–588.

Castellucci, Paola. 2004. “George Boole: il pensiero dietro la maschera.” In L’organizzazione del sapere: studi in onore di Alfredo Serrai, ed. by M. T. Biagetti, 55–69. Milano: Bonnard.

Casey, Michael A., et al. 2008. “Content-based Music Information Retrieval: current directions and future challenges.” Proceedings of the IEEE 96 (4): 668–696.

Cawkell, Antony E. 1993. Indexing collections of electronic images: a review. London: British Library.

Deb, Sagarmay. (ed.). 2004. Multimedia systems and Content-Based Image Retrieval. Hershey: Idea Group.

Del Bimbo, Alberto. 1999. Visual Information Retrieval. San Francisco: Kaufmann.

Eakins, John P. 1996. “Automatic image content retrieval: are we getting anywhere?” In Proceedings of third International Conference on Electronic Library and Visual Information Research, 123–135. London: Aslib.

Enser, Peter G. B. 1995. “Pictorial information retrieval: progress in documentation.” Journal of Documentation 51 (2): 126–170.

Enser, Peter G. B. 2000. “Visual image retrieval: seeking the alliance of concept-based and content-based paradigms.” Journal of Information Science 26 (4): 199–210.

Enser, Peter G. B. 2008. “Visual image retrieval.” Annual review of information science and technology 42 (1): 1–42.

Enser, Peter G. B., and Christine J. Sandom. 2003. “Towards a comprehensive survey of the semantic gap in visual image retrieval.” In Image and Video Retrieval: CIVR 2003 Proceedings, 291–299. Berlin: Springer.

Enser, Peter G. B., et al. 2005. “Surveying the reality of semantic image retrieval.” In 8th International Conference on Visual Information Systems Proceedings, 177–188. Berlin: Springer.

Gast, Erik, et al. 2013. “Very large scale nearest neighbor search: ideas, strategies and challenges.” International Journal of Multimedia Information Retrieval 2 (4): 229–241.

Google Goggles. 2016.

Grosky, William I. 1997. “Managing multimedia information in database systems.” Communications of the ACM 40 (12): 73–80.

Guy, Marieke, and Emma Tonkin. 2006. “Folksonomies: tidying up tags?” D-Lib Magazine 12 (1).

Hanjalic, Alan. 2012. “New grand challenge for Multimedia Information Retrieval: bridging the utility gap.” International Journal of Multimedia Information Retrieval 1 (3): 139–152.

Hare, Jonathon S., et al. 2006. “Mind the gap: another look at the problem of the semantic gap in image retrieval.” In: Proceedings of Multimedia Content Analysis, Management and Retrieval 2006, 75–86. San Jose: SPIE.

International Journal of Multimedia Information Retrieval: IJMIR (2012–). London: Springer.

Jiang, Lu, et al. 2016. “Text-to-video: a semantic search engine for internet videos.“ International Journal of Multimedia Information Retrieval 5 (1): 3–18.

Jiang, Yu-Gang, et al. 2013. “High-level event recognition in unconstrained videos.” International Journal of Multimedia Information Retrieval 2 (2): 73–101.

Kato, Toshikazu. 1992. “Database architecture for content-based image retrieval.” In: Image Storage and Retrieval Systems: SPIE Proceedings vol. 1662, 112–123. San Jose: SPIE.

Kovács, Béla Lóránt, and Margit Takács. 2014. “New search method in digital library image collections: a theoretical inquiry.” Journal of Librarianship and Information Science 46 (3): 217–225.

Lancaster, Frederick W. 2003. Indexing and abstracting in theory and practice. Urbana Champaign: University of Illinois.

Lew, Michael S. 2006. “Content-based Multimedia Information Retrieval: state of the art and challenges.” ACM Transactions on Multimedia Computing, Communications and Applications 2 (1): 1–19.

Linckels, Serge, and Christoph Meinel. 2011. E-librarian service: user-friendly semantic search in digital libraries. Berlin: Springer.

Mallik, Anupama, and Santanu Chaudhury. 2012. “Acquisition of multimedia ontology: an application in preservation of cultural heritage.” International Journal of Multimedia Information Retrieval 1 (4): 249–262.

Maybury Mark T. 2012. Multimedia information extraction. New York: Wiley-IEEE.

Menard, Elaine, and Margaret Smithglass. 2014. “Digital image access: an exploration of the best practices of online resources.” Library Hi Tech 32 (1): 98–119.

Mittal, Ankush. 2006. “An overview of multimedia content-based retrieval strategies.” Informatica 30 (3): 347–356.

Nikzad, Mohammad, and Hamid Abrishami Moghaddam. 2014. “An incremental evolutionary method for optimizing dynamic image retrieval systems.” International Journal of Multimedia Information Retrieval 3 (1): 41–52.

Otlet, Paul. 1934. Traité de documentation. Bruxelles: Mundaneum.

Pérez Álvarez, Sara. 2006. “Aproximación al estudio de los sistemas de recuperación de imágenes ‘CBIR’ desde el ámbito de la Documentación.” Documentación de las ciencias de la información 29: 301–315.

Raieli, Roberto. 2013. Multimedia Information Retrieval: theory and techniques. Oxford: Chandos.

Shadbolt, Nigel, et al. 2006. “The Semantic Web revised.” IEEE Intelligent Sistems 21 (3): 96–101.

Shazam. 2016.

SoundHound. 2016.

Svenonius, Elaine. 1994. “Access to nonbook materials: the limits of subject indexing for visual and aural languages.” Journal of the American Society for Information Science 45 (8): 600–606.

Tan, Chun-Chet, and Chong-Wah Ngo. 2016. “On the use of commonsense ontology for multimedia event recounting.“ International Journal of Multimedia Information Retrieval 5 (2): 73–88.

Thomee, Bart, and Michael S. Lew. 2012. “Interactive search in image retrieval: a survey.” International Journal of Multimedia Information Retrieval 1 (2): 71–86.

Venters, Colin C., et al. 2004. “Mind the gap: Content-Based Image Retrieval and the user interface.” In Multimedia systems and Content-Based Image Retrieval, ed. by S. Deb, 322–355. Hershey: Idea Group.

Williamson, Nancy J., and Clare Beghtol (eds.). 2003. Knowledge organization and classification in international Information Retrieval. New York: Haworth.

Xu, Lei, and Xiaoguang Wang. 2015. “Semantic description of cultural digital images: using a hierarchical model and controlled vocabulary.” D-Lib Magazine 21 (5/6).

Yang, Sharon Q. 2012. “Tagging for subject access.” Computers in libraries 32 (9): 19–23.

Yoshitaka, Atsuo, and Tadao Ichikawa. 1999. “A survey on content-based retrieval for multimedia databases.” IEEE Transactions 11 (1): 81–93.

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.

Copyright (c) 2016 Roberto Raieli

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Logo Università di FirenzeLogo is a journal of the SAGAS Department, University of Florence, published by EUM, Edizioni Università di Macerata (Italy).

ISSN: 2038-1026

Openaire Logo DOAJ seal